Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Lancet Neurol ; 23(5): 500-510, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631766

RESUMO

BACKGROUND: In people with genetic forms of Alzheimer's disease, such as in Down syndrome and autosomal-dominant Alzheimer's disease, pathological changes specific to Alzheimer's disease (ie, accumulation of amyloid and tau) occur in the brain at a young age, when comorbidities related to ageing are not present. Studies including these cohorts could, therefore, improve our understanding of the early pathogenesis of Alzheimer's disease and be useful when designing preventive interventions targeted at disease pathology or when planning clinical trials. We compared the magnitude, spatial extent, and temporal ordering of tau spread in people with Down syndrome and autosomal-dominant Alzheimer's disease. METHODS: In this cross-sectional observational study, we included participants (aged ≥25 years) from two cohort studies. First, we collected data from the Dominantly Inherited Alzheimer's Network studies (DIAN-OBS and DIAN-TU), which include carriers of autosomal-dominant Alzheimer's disease genetic mutations and non-carrier familial controls recruited in Australia, Europe, and the USA between 2008 and 2022. Second, we collected data from the Alzheimer Biomarkers Consortium-Down Syndrome study, which includes people with Down syndrome and sibling controls recruited from the UK and USA between 2015 and 2021. Controls from the two studies were combined into a single group of familial controls. All participants had completed structural MRI and tau PET (18F-flortaucipir) imaging. We applied Gaussian mixture modelling to identify regions of high tau PET burden and regions with the earliest changes in tau binding for each cohort separately. We estimated regional tau PET burden as a function of cortical amyloid burden for both cohorts. Finally, we compared the temporal pattern of tau PET burden relative to that of amyloid. FINDINGS: We included 137 people with Down syndrome (mean age 38·5 years [SD 8·2], 74 [54%] male, and 63 [46%] female), 49 individuals with autosomal-dominant Alzheimer's disease (mean age 43·9 years [11·2], 22 [45%] male, and 27 [55%] female), and 85 familial controls, pooled from across both studies (mean age 41·5 years [12·1], 28 [33%] male, and 57 [67%] female), who satisfied the PET quality-control procedure for tau-PET imaging processing. 134 (98%) people with Down syndrome, 44 (90%) with autosomal-dominant Alzheimer's disease, and 77 (91%) controls also completed an amyloid PET scan within 3 years of tau PET imaging. Spatially, tau PET burden was observed most frequently in subcortical and medial temporal regions in people with Down syndrome, and within the medial temporal lobe in people with autosomal-dominant Alzheimer's disease. Across the brain, people with Down syndrome had greater concentrations of tau for a given level of amyloid compared with people with autosomal-dominant Alzheimer's disease. Temporally, increases in tau were more strongly associated with increases in amyloid for people with Down syndrome compared with autosomal-dominant Alzheimer's disease. INTERPRETATION: Although the general progression of amyloid followed by tau is similar for people Down syndrome and people with autosomal-dominant Alzheimer's disease, we found subtle differences in the spatial distribution, timing, and magnitude of the tau burden between these two cohorts. These differences might have important implications; differences in the temporal pattern of tau accumulation might influence the timing of drug administration in clinical trials, whereas differences in the spatial pattern and magnitude of tau burden might affect disease progression. FUNDING: None.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Síndrome de Down , Masculino , Feminino , Humanos , Adulto , Doença de Alzheimer/genética , Estudos Transversais , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Amiloide , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Disfunção Cognitiva/patologia
2.
Brain Commun ; 6(2): fcae107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601916

RESUMO

Synaptic loss is a primary pathology in Alzheimer's disease and correlates best with cognitive impairment as found in post-mortem studies. Previously, we observed in vivo reductions of synaptic density with [11C]UCB-J PET (radiotracer for synaptic vesicle protein 2A) throughout the neocortex and medial temporal brain regions in early Alzheimer's disease. In this study, we applied independent component analysis to synaptic vesicle protein 2A-PET data to identify brain networks associated with cognitive deficits in Alzheimer's disease in a blinded data-driven manner. [11C]UCB-J binding to synaptic vesicle protein 2A was measured in 38 Alzheimer's disease (24 mild Alzheimer's disease dementia and 14 mild cognitive impairment) and 19 cognitively normal participants. [11C]UCB-J distribution volume ratio values were calculated with a whole cerebellum reference region. Principal components analysis was first used to extract 18 independent components to which independent component analysis was then applied. Subject loading weights per pattern were compared between groups using Kruskal-Wallis tests. Spearman's rank correlations were used to assess relationships between loading weights and measures of cognitive and functional performance: Logical Memory II, Rey Auditory Verbal Learning Test-long delay, Clinical Dementia Rating sum of boxes and Mini-Mental State Examination. We observed significant differences in loading weights among cognitively normal, mild cognitive impairment and mild Alzheimer's disease dementia groups in 5 of the 18 independent components, as determined by Kruskal-Wallis tests. Only Patterns 1 and 2 demonstrated significant differences in group loading weights after correction for multiple comparisons. Excluding the cognitively normal group, we observed significant correlations between the loading weights for Pattern 1 (left temporal cortex and the cingulate gyrus) and Clinical Dementia Rating sum of boxes (r = -0.54, P = 0.0019), Mini-Mental State Examination (r = 0.48, P = 0.0055) and Logical Memory II score (r = 0.44, P = 0.013). For Pattern 2 (temporal cortices), significant associations were demonstrated between its loading weights and Logical Memory II score (r = 0.34, P = 0.0384). Following false discovery rate correction, only the relationship between the Pattern 1 loading weights with Clinical Dementia Rating sum of boxes (r = -0.54, P = 0.0019) and Mini-Mental State Examination (r = 0.48, P = 0.0055) remained statistically significant. We demonstrated that independent component analysis could define coherent spatial patterns of synaptic density. Furthermore, commonly used measures of cognitive performance correlated significantly with loading weights for two patterns within only the mild cognitive impairment/mild Alzheimer's disease dementia group. This study leverages data-centric approaches to augment the conventional region-of-interest-based methods, revealing distinct patterns that differentiate between mild cognitive impairment and mild Alzheimer's disease dementia, marking a significant advancement in the field.

4.
JAMA Neurol ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683602

RESUMO

Importance: Effects of antiamyloid agents, targeting either fibrillar or soluble monomeric amyloid peptides, on downstream biomarkers in cerebrospinal fluid (CSF) and plasma are largely unknown in dominantly inherited Alzheimer disease (DIAD). Objective: To investigate longitudinal biomarker changes of synaptic dysfunction, neuroinflammation, and neurodegeneration in individuals with DIAD who are receiving antiamyloid treatment. Design, Setting, and Participants: From 2012 to 2019, the Dominantly Inherited Alzheimer Network Trial Unit (DIAN-TU-001) study, a double-blind, placebo-controlled, randomized clinical trial, investigated gantenerumab and solanezumab in DIAD. Carriers of gene variants were assigned 3:1 to either drug or placebo. The present analysis was conducted from April to June 2023. DIAN-TU-001 spans 25 study sites in 7 countries. Biofluids and neuroimaging from carriers of DIAD gene variants in the gantenerumab, solanezumab, and placebo groups were analyzed. Interventions: In 2016, initial dosing of gantenerumab, 225 mg (subcutaneously every 4 weeks) was increased every 8 weeks up to 1200 mg. In 2017, initial dosing of solanezumab, 400 mg (intravenously every 4 weeks) was increased up to 1600 mg every 4 weeks. Main Outcomes and Measures: Longitudinal changes in CSF levels of neurogranin, soluble triggering receptor expressed on myeloid cells 2 (sTREM2), chitinase 3-like 1 protein (YKL-40), glial fibrillary acidic protein (GFAP), neurofilament light protein (NfL), and plasma levels of GFAP and NfL. Results: Of 236 eligible participants screened, 43 were excluded. A total of 142 participants (mean [SD] age, 44 [10] years; 72 female [51%]) were included in the study (gantenerumab, 52 [37%]; solanezumab, 50 [35%]; placebo, 40 [28%]). Relative to placebo, gantenerumab significantly reduced CSF neurogranin level at year 4 (mean [SD] ß = -242.43 [48.04] pg/mL; P < .001); reduced plasma GFAP level at year 1 (mean [SD] ß = -0.02 [0.01] ng/mL; P = .02), year 2 (mean [SD] ß = -0.03 [0.01] ng/mL; P = .002), and year 4 (mean [SD] ß = -0.06 [0.02] ng/mL; P < .001); and increased CSF sTREM2 level at year 2 (mean [SD] ß = 1.12 [0.43] ng/mL; P = .01) and year 4 (mean [SD] ß = 1.06 [0.52] ng/mL; P = .04). Solanezumab significantly increased CSF NfL (log) at year 4 (mean [SD] ß = 0.14 [0.06]; P = .02). Correlation analysis for rates of change found stronger correlations between CSF markers and fluid markers with Pittsburgh compound B positron emission tomography for solanezumab and placebo. Conclusions and Relevance: This randomized clinical trial supports the importance of fibrillar amyloid reduction in multiple AD-related processes of neuroinflammation and neurodegeneration in CSF and plasma in DIAD. Additional studies of antiaggregated amyloid therapies in sporadic AD and DIAD are needed to determine the utility of nonamyloid biomarkers in determining disease modification. Trial Registration: ClinicalTrials.gov Identifier: NCT04623242.

5.
Brain ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38454550

RESUMO

Hearing difficulty (HD) is one of the major health burdens in older adults. While aging-related changes in the peripheral auditory system play an important role, genetic variation associated with brain structure and function could also be involved in HD predisposition. We analyzed a large-scale HD genome-wide association study (GWAS; Ntotal = 501,825, 56% females) and GWAS data related to 3,935 brain imaging-derived phenotypes (IDPs) assessed in up to 33,224 individuals (52% females) using multiple magnetic resonance imaging modalities. To investigate HD pleiotropy with brain structure and function, we conducted genetic correlation, latent causal variable, Mendelian randomization, and multivariable generalized linear regression analyses. Additionally, we performed local genetic correlation and multi-trait colocalization analyses to identify genomic regions and loci implicated in the pleiotropic mechanisms shared between HD and brain IDPs. We observed a widespread genetic correlation of HD with 120 IDPs in females, 89 IDPs in males, and 171 IDPs in the sex-combined analysis. The latent causal variable analysis showed that some of these genetic correlations could be due to cause-effect relationships. For seven correlations, the causal effects were also confirmed by the Mendelian randomization approach: vessel volume→HD in the sex-combined analysis; hippocampus volume→HD, cerebellum grey matter volume→HD, primary visual cortex volume→HD, and HD→fluctuation amplitudes of node 46 in resting-state functional MRI dimensionality 100 in females; global mean thickness→HD and HD→mean orientation dispersion index in superior corona radiata in males. The local genetic correlation analysis identified 13 pleiotropic regions between HD and these seven IDPs. We also observed a colocalization signal for the rs13026575 variant between HD, primary visual cortex volume, and SPTBN1 transcriptomic regulation in females. Brain structure and function may have a role in the sex differences in HD predisposition via possible cause-effect relationships and shared regulatory mechanisms.

7.
Alzheimers Dement ; 20(4): 2843-2860, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38445818

RESUMO

INTRODUCTION: Tau phosphorylated at threonine-217 (pT217-tau) is a novel fluid-based biomarker that predicts onset of Alzheimer's disease (AD) symptoms, but little is known about how pT217-tau arises in the brain, as soluble pT217-tau is dephosphorylated post mortem in humans. METHODS: We used multilabel immunofluorescence and immunoelectron microscopy to examine the subcellular localization of early-stage pT217-tau in entorhinal and prefrontal cortices of aged macaques with naturally occurring tau pathology and assayed pT217-tau levels in plasma. RESULTS: pT217-tau was aggregated on microtubules within dendrites exhibiting early signs of degeneration, including autophagic vacuoles. It was also seen trafficking between excitatory neurons within synapses on spines, where it was exposed to the extracellular space, and thus accessible to cerebrospinal fluid (CSF)/blood. Plasma pT217-tau levels increased across the age span and thus can serve as a biomarker in macaques. DISCUSSION: These data help to explain why pT217-tau predicts degeneration in AD and how it gains access to CSF and plasma to serve as a fluid biomarker.


Assuntos
Doença de Alzheimer , Proteínas tau , Animais , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Córtex Pré-Frontal Dorsolateral , Macaca mulatta/metabolismo , Proteínas tau/líquido cefalorraquidiano
8.
NPJ Parkinsons Dis ; 10(1): 42, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402233

RESUMO

Parkinson's disease (PD) is the fastest growing neurodegenerative disease, but at present there is no cure, nor any disease-modifying treatments. Synaptic biomarkers from in vivo imaging have shown promise in imaging loss of synapses in PD and other neurodegenerative disorders. Here, we provide new clinical insights from a cross-sectional, high-resolution positron emission tomography (PET) study of 30 PD individuals and 30 age- and sex-matched healthy controls (HC) with the radiotracer [11C]UCB-J, which binds to synaptic vesicle glycoprotein 2A (SV2A), and is therefore, a biomarker of synaptic density in the living brain. We also examined a measure of relative brain perfusion from the early part of the same PET scan. Our results provide evidence for synaptic density loss in the substantia nigra that had been previously reported, but also extend this to other early-Braak stage regions known to be affected in PD (brainstem, caudate, olfactory cortex). Importantly, we also found a direct association between synaptic density loss in the nigra and severity of symptoms in patients. A greater extent and wider distribution of synaptic density loss in PD patients with longer illness duration suggests that [11C]UCB-J PET can be used to measure synapse loss with disease progression. We also demonstrate lower brain perfusion in PD vs. HC groups, with a greater extent of abnormalities in those with longer duration of illness, suggesting that [11C]UCB-J PET can simultaneously provide information on changes in brain perfusion. These results implicate synaptic imaging as a useful PD biomarker for future disease-modifying interventions.

9.
Alzheimers Dement ; 20(4): 2698-2706, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38400532

RESUMO

INTRODUCTION: Increasing evidence suggests that amyloid reduction could serve as a plausible surrogate endpoint for clinical and cognitive efficacy. The double-blind phase 3 DIAN-TU-001 trial tested clinical and cognitive declines with increasing doses of solanezumab or gantenerumab. METHODS: We used latent class (LC) analysis on data from the Dominantly Inherited Alzheimer Network Trials Unit 001 trial to test amyloid positron emission tomography (PET) reduction as a potential surrogate biomarker. RESULTS: LC analysis categorized participants into three classes: amyloid no change, amyloid reduction, and amyloid growth, based on longitudinal amyloid Pittsburgh compound B PET standardized uptake value ratio data. The amyloid-no-change class was at an earlier disease stage for amyloid amounts and dementia. Despite similar baseline characteristics, the amyloid-reduction class exhibited reductions in the annual decline rates compared to the amyloid-growth class across multiple biomarker, clinical, and cognitive outcomes. DISCUSSION: LC analysis indicates that amyloid reduction is associated with improved clinical outcomes and supports its use as a surrogate biomarker in clinical trials. HIGHLIGHTS: We used latent class (LC) analysis to test amyloid reduction as a surrogate biomarker. Despite similar baseline characteristics, the amyloid-reduction class exhibited remarkably better outcomes compared to the amyloid-growth class across multiple measures. LC analysis proves valuable in testing amyloid reduction as a surrogate biomarker in clinical trials lacking significant treatment effects.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Amiloide , Peptídeos beta-Amiloides , Proteínas Amiloidogênicas , Biomarcadores , Método Duplo-Cego , Análise de Classes Latentes , Tomografia por Emissão de Pósitrons/métodos
10.
Alzheimers Res Ther ; 16(1): 20, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273408

RESUMO

BACKGROUND: Effective, disease-modifying therapeutics for the treatment of Alzheimer's disease (AD) remain a large unmet need. Extensive evidence suggests that amyloid beta (Aß) is central to AD pathophysiology, and Aß oligomers are among the most toxic forms of Aß. CT1812 is a novel brain penetrant sigma-2 receptor ligand that interferes with the binding of Aß oligomers to neurons. Preclinical studies of CT1812 have demonstrated its ability to displace Aß oligomers from neurons, restore synapses in cell cultures, and improve cognitive measures in mouse models of AD. CT1812 was found to be generally safe and well tolerated in a placebo-controlled phase 1 clinical trial in healthy volunteers and phase 1a/2 clinical trials in patients with mild to moderate dementia due to AD. The unique objective of this study was to incorporate synaptic positron emission tomography (PET) imaging as an outcome measure for CT1812 in AD patients. METHODS: The present phase 1/2 study was a randomized, double-blind, placebo-controlled, parallel-group trial conducted in 23 participants with mild to moderate dementia due to AD to primarily evaluate the safety of CT1812 and secondarily its pharmacodynamic effects. Participants received either placebo or 100 mg or 300 mg per day of oral CT1812 for 24 weeks. Pharmacodynamic effects were assessed using the exploratory efficacy endpoints synaptic vesicle glycoprotein 2A (SV2A) PET, fluorodeoxyglucose (FDG) PET, volumetric MRI, cognitive clinical measures, as well as cerebrospinal fluid (CSF) biomarkers of AD pathology and synaptic degeneration. RESULTS: No treatment differences relative to placebo were observed in the change from baseline at 24 weeks in either SV2A or FDG PET signal, the cognitive clinical rating scales, or in CSF biomarkers. Composite region volumetric MRI revealed a trend towards tissue preservation in participants treated with either dose of CT1812, and nominally significant differences with both doses of CT1812 compared to placebo were found in the pericentral, prefrontal, and hippocampal cortices. CT1812 was safe and well tolerated. CONCLUSIONS: The safety findings of this 24-week study and the observed changes on volumetric MRI with CT1812 support its further clinical development. TRIAL REGISTRATION: The clinical trial described in this manuscript is registered at clinicaltrials.gov (NCT03493282).


Assuntos
Doença de Alzheimer , Camundongos , Animais , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Projetos Piloto , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Biomarcadores/líquido cefalorraquidiano
11.
Eur J Nucl Med Mol Imaging ; 51(4): 1012-1022, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37955791

RESUMO

PURPOSE: Aging is a major societal concern due to age-related functional losses. Synapses are crucial components of neural circuits, and synaptic density could be a sensitive biomarker to evaluate brain function. [11C]UCB-J is a positron emission tomography (PET) ligand targeting synaptic vesicle glycoprotein 2A (SV2A), which can be used to evaluate brain synaptic density in vivo. METHODS: We evaluated age-related changes in gray matter synaptic density, volume, and blood flow using [11C]UCB-J PET and magnetic resonance imaging (MRI) in a wide age range of 80 cognitive normal subjects (21-83 years old). Partial volume correction was applied to the PET data. RESULTS: Significant age-related decreases were found in 13, two, and nine brain regions for volume, synaptic density, and blood flow, respectively. The prefrontal cortex showed the largest volume decline (4.9% reduction per decade: RPD), while the synaptic density loss was largest in the caudate (3.6% RPD) and medial occipital cortex (3.4% RPD). The reductions in caudate are consistent with previous SV2A PET studies and likely reflect that caudate is the site of nerve terminals for multiple major tracts that undergo substantial age-related neurodegeneration. There was a non-significant negative relationship between volume and synaptic density reductions in 16 gray matter regions. CONCLUSION: MRI and [11]C-UCB-J PET showed age-related decreases of gray matter volume, synaptic density, and blood flow; however, the regional patterns of the reductions in volume and SV2A binding were different. Those patterns suggest that MR-based measures of GM volume may not be directly representative of synaptic density.


Assuntos
Substância Cinzenta , Glicoproteínas de Membrana , Humanos , Idoso de 80 Anos ou mais , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Glicoproteínas de Membrana/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Sinapses/metabolismo
12.
Am J Geriatr Psychiatry ; 32(1): 17-28, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37673749

RESUMO

OBJECTIVE: Multimodal imaging techniques have furthered our understanding of how different aspects of Alzheimer's disease (AD) pathology relate to one another. Diffusion tensor imaging (DTI) measures such as mean diffusivity (MD) may be a surrogate measure of the changes in gray matter structure associated with AD. Positron emission tomography (PET) imaging of synaptic vesicle glycoprotein 2A (SV2A) has been used to quantify synaptic loss, which is the major pathological correlate of cognitive impairment in AD. In this study, we investigated the relationship between gray matter microstructure and synaptic density. METHODS: DTI was used to measure MD and [11C]UCB-J PET to measure synaptic density in 33 amyloid-positive participants with AD and 17 amyloid-negative cognitively normal (CN) participants aged 50-83. Univariate regression analyses were used to assess the association between synaptic density and MD in both the AD and CN groups. RESULTS: Hippocampal MD was inversely associated with hippocampal synaptic density in participants with AD (r = -0.55, p <0.001, df = 31) but not CN (r = 0.13, p = 0.62, df = 15). Exploratory analyses across other regions known to be affected in AD suggested widespread inverse associations between synaptic density and MD in the AD group. CONCLUSION: In the setting of AD, an increase in gray matter MD is inversely associated with synaptic density. These co-occurring changes may suggest a link between synaptic loss and gray matter microstructural changes in AD. Imaging studies of gray matter microstructure and synaptic density may allow important insights into AD-related neuropathology.


Assuntos
Doença de Alzheimer , Substância Branca , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Imagem de Tensor de Difusão , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Tomografia por Emissão de Pósitrons/métodos , Imagem Multimodal , Encéfalo/metabolismo , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Glicoproteínas de Membrana , Proteínas do Tecido Nervoso/metabolismo
13.
Immun Ageing ; 20(1): 71, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042785

RESUMO

BACKGROUND: Memory CD8+ T cells expand with age. We previously demonstrated an age-associated expansion of effector memory (EM) CD8+ T cells expressing low levels of IL-7 receptor alpha (IL-7Rαlow) and the presence of its gene signature (i.e., IL-7Rαlow aging genes) in peripheral blood of older adults without Alzheimer's disease (AD). Considering age as the strongest risk factor for AD and the recent finding of EM CD8+ T cell expansion, mostly IL-7Rαlow cells, in AD, we investigated whether subjects with AD have alterations in IL-7Rαlow aging gene signature, especially in relation to genes possibly associated with AD and disease severity. RESULTS: We identified a set of 29 candidate genes (i.e., putative AD genes) which could be differentially expressed in peripheral blood of patients with AD through the systematic search of publicly available datasets. Of the 29 putative AD genes, 9 genes (31%) were IL-7Rαlow aging genes (P < 0.001), suggesting the possible implication of IL-7Rαlow aging genes in AD. These findings were validated by RT-qPCR analysis of 40 genes, including 29 putative AD genes, additional 9 top IL-7R⍺low aging but not the putative AD genes, and 2 inflammatory control genes in peripheral blood of cognitively normal persons (CN, 38 subjects) and patients with AD (40 mild cognitive impairment and 43 dementia subjects). The RT-qPCR results showed 8 differentially expressed genes between AD and CN groups; five (62.5%) of which were top IL-7Rαlow aging genes (FGFBP2, GZMH, NUAK1, PRSS23, TGFBR3) not previously reported to be altered in AD. Unbiased clustering analysis revealed 3 clusters of dementia patients with distinct expression levels of the 40 analyzed genes, including IL-7Rαlow aging genes, which were associated with neurocognitive function as determined by MoCA, CDRsob and neuropsychological testing. CONCLUSIONS: We report differential expression of "normal" aging genes associated with IL-7Rαlow EM CD8+ T cells in peripheral blood of patients with AD, and the significance of such gene expression in clustering subjects with dementia due to AD into groups with different levels of cognitive functioning. These results provide a platform for studies investigating the possible implications of age-related immune changes, including those associated with CD8+ T cells, in AD.

14.
bioRxiv ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37986900

RESUMO

INTRODUCTION: pT217-tau is a novel fluid-based biomarker that predicts onset of Alzheimer's disease (AD) symptoms, but little is known about how pT217-tau arises in brain, as soluble pT217-tau is dephosphorylated postmortem in humans. METHODS: We utilized multi-label immunofluorescence and immunoelectron-microscopy to examine the subcellular localization of early-stage pT217-tau in entorhinal and prefrontal cortices of aged macaques with naturally-occurring tau pathology and assayed pT217-tau levels in plasma. RESULTS: pT217-tau was aggregated on microtubules within dendrites exhibiting early signs of degeneration, including autophagic vacuoles. It was also seen trafficking between excitatory neurons within synapses on spines, where it was exposed to the extracellular space, and thus accessible to CSF/blood. Plasma pT217-tau levels increased across the age-span and thus can serve as a biomarker in macaques. DISCUSSION: These data help to explain why pT217-tau predicts degeneration in AD and how it gains access to CSF and plasma to serve as a fluid biomarker.

15.
Alzheimers Dement (N Y) ; 9(4): e12431, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915375

RESUMO

Introduction: Current approaches for treating sporadic Alzheimer's disease (sAD) focus on removal of amyloid beta 1-42 (Aß1-42) or phosphorylated tau, but additional strategies are needed to reduce neuropathology at earlier stages prior to neuronal damage. Longstanding data show that calcium dysregulation is a key etiological factor in sAD, and the cortical neurons most vulnerable to tau pathology show magnified calcium signaling, for example in dorsolateral prefrontal cortex (dlPFC) and entorhinal cortex (ERC). In primate dlPFC and ERC, type 3 metabotropic glutamate receptors (mGluR3s) are predominately post-synaptic, on spines, where they regulate cAMP-calcium signaling, a process eroded by inflammatory glutamate carboxypeptidase II (GCPII) actions. The current study tested whether enhancing mGluR3 regulation of calcium via chronic inhibition of GCPII would reduce tau hyperphosphorylation in aged macaques with naturally-occurring tau pathology. Methods: Aged rhesus macaques were treated daily with the GCPII inhibitor, 2-MPPA (2-3-mercaptopropyl-penanedioic acid (2-MPPA)),Aged rhesus macaques were treated daily with the GCPII inhibitor, 2-MPPA (2-3-mercaptopropyl-penanedioic acid (2-MPPA)). Results: Aged macaques that received 2-MPPA had significantly lower pT217Tau levels in dlPFC and ERC, and had lowered plasma pT217Tau levels from baseline. pT217Tau levels correlated significantly with GCPII activity in dlPFC. Both 2-MPPA- and vehicle-treated monkeys showed cognitive improvement; 2-MPPA had no apparent side effects. Exploratory CSF analyses indicated reduced pS202Tau with 2-MPPA administration, confirmed in dlPFC samples. Discussion: These data provide proof-of-concept support that GCPII inhibition can reduce tau hyperphosphorylation in the primate cortices most vulnerable in sAD. GCPII inhibition may be particularly helpful in reducing the risk of sAD caused by inflammation. These data in nonhuman primates should encourage future research on this promising mechanism. Highlights: Inflammation is a key driver of sporadic Alzheimer's disease.GCPII inflammatory signaling in brain decreases mGluR3 regulation of calcium.Chronic inhibition of GCPII inflammatory signaling reduced pT217Tau in aged monkeys.GCPII inhibition is a novel strategy to help prevent tau pathology at early stages.

16.
Cereb Cortex ; 33(24): 11501-11516, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-37874022

RESUMO

Alzheimer's disease cortical tau pathology initiates in the layer II cell clusters of entorhinal cortex, but it is not known why these specific neurons are so vulnerable. Aging macaques exhibit the same qualitative pattern of tau pathology as humans, including initial pathology in layer II entorhinal cortex clusters, and thus can inform etiological factors driving selective vulnerability. Macaque data have already shown that susceptible neurons in dorsolateral prefrontal cortex express a "signature of flexibility" near glutamate synapses on spines, where cAMP-PKA magnification of calcium signaling opens nearby potassium and hyperpolarization-activated cyclic nucleotide-gated channels to dynamically alter synapse strength. This process is regulated by PDE4A/D, mGluR3, and calbindin, to prevent toxic calcium actions; regulatory actions that are lost with age/inflammation, leading to tau phosphorylation. The current study examined whether a similar "signature of flexibility" expresses in layer II entorhinal cortex, investigating the localization of PDE4D, mGluR3, and HCN1 channels. Results showed a similar pattern to dorsolateral prefrontal cortex, with PDE4D and mGluR3 positioned to regulate internal calcium release near glutamate synapses, and HCN1 channels concentrated on spines. As layer II entorhinal cortex stellate cells do not express calbindin, even when young, they may be particularly vulnerable to magnified calcium actions and ensuing tau pathology.


Assuntos
Doença de Alzheimer , Animais , Humanos , Doença de Alzheimer/patologia , Córtex Entorrinal/patologia , Macaca mulatta/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Cálcio , Calbindinas , Glutamatos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo
17.
medRxiv ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37693474

RESUMO

Background: Hearing difficulty (HD) is one of the major health burdens in older adults. While aging-related changes in the peripheral auditory system play an important role, genetic variation associated with brain structure and function could also be involved in HD predisposition. Methods: We analyzed a large-scale HD genome-wide association study (GWAS; N total = 501,825, 56% females) and GWAS data related to 3,935 brain imaging-derived phenotypes (IDPs) assessed in up to 33,224 individuals (52% females) using multiple magnetic resonance imaging (MRI) modalities. To investigate HD pleiotropy with brain structure and function, we conducted genetic correlation, latent causal variable (LCV), Mendelian randomization (MR), and multivariable generalized linear regression analyses. Additionally, we performed local genetic correlation and multi-trait colocalization analyses to identify genomic regions and loci implicated in the pleiotropic mechanisms shared between HD and brain IDPs. Results: We observed a widespread genetic correlation of HD with 120 IDPs in females, 89 IDPs in males, and 171 IDPs in the sex-combined analysis. The LCV analyses showed that some of these genetic correlations could be due to cause-effect relationships. For seven correlations, the causal effects were also confirmed by the MR approach: vessel volume→HD in the sex-combined analysis; hippocampus volume→HD, cerebellum grey matter volume→HD, primary visual cortex volume→HD, and HD→rfMRI-ICA100 node 46 in females; global mean thickness→HD and HD→mean orientation dispersion index in superior corona radiata in males. The local genetic correlation analyses identified 13 pleiotropic regions between HD and these seven IDPs. We also observed a colocalization signal for the rs13026575 variant between HD, primary visual cortex volume, and SPTBN1 transcriptomic regulation in females. Conclusion: Brain structure and function may have a role in the sex differences in HD predisposition via possible cause-effect relationships and shared regulatory mechanisms.

18.
Alzheimers Dement (N Y) ; 9(3): e12403, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538343

RESUMO

INTRODUCTION: Methylphenidate has been shown to improve apathy in patients with Alzheimer's disease (AD). The authors evaluated the impact of methylphenidate on neuropsychiatric symptoms (NPS) of AD, excluding apathy, using data from the Apathy in Dementia Methylphenidate Trial 2 (ADMET 2) study. METHODS: A secondary analysis was conducted on data from the ADMET 2 study to determine the effect of methylphenidate on Neuropsychiatric Inventory (NPI) scores outside of apathy. Caregiver scores were compared from baseline to month 6 in 199 participants receiving methylphenidate (20 mg/day) or placebo regarding the presence or absence of individual neuropsychiatric symptoms, emergence of new symptoms, and individual domain scores. RESULTS: No clinically meaningful improvement was observed in any NPI domain, excluding apathy, in participants treated with methylphenidate compared to placebo after 6 months. A statistical difference between groups was appreciated in the domains of elation/euphoria (P = 0.044) and appetite/eating disorders (P = 0.014); however, these findings were not considered significant. DISCUSSION: Methylphenidate is a selective agent for symptoms of apathy in patients with AD with no meaningful impact on other NPS. Findings from this secondary analysis are considered exploratory and multiple limitations should be considered when interpreting these results, including small sample size and use of a single questionnaire.HIGHLIGHTS: Methylphenidate was not associated with significant improvement on the Neuropsychiatric Inventory in domains outside of apathy.Methylphenidate did not show a statistically significant emergence of new neuropsychiatric symptoms (NPS) throughout the 6-month treatment period compared to placebo.Methylphenidate appears to be a highly selective agent for apathy in Alzheimer's disease, potentially supporting catecholaminergic dysfunction as the driving force behind this presentation of symptoms.

19.
Neuroimage Clin ; 39: 103457, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37422964

RESUMO

BACKGROUND: Synaptic loss is considered an early pathological event and major structural correlate of cognitive impairment in Alzheimer's disease (AD). We used principal component analysis (PCA) to identify regional patterns of covariance in synaptic density using [11C]UCB-J PET and assessed the association between principal components (PC) subject scores with cognitive performance. METHODS: [11C]UCB-J binding was measured in 45 amyloid + participants with AD and 19 amyloid- cognitively normal participants aged 55-85. A validated neuropsychological battery assessed performance across five cognitive domains. PCA was applied to the pooled sample using distribution volume ratios (DVR) standardized (z-scored) by region from 42 bilateral regions of interest (ROI). RESULTS: Parallel analysis determined three significant PCs explaining 70.2% of the total variance. PC1 was characterized by positive loadings with similar contributions across the majority of ROIs. PC2 was characterized by positive and negative loadings with strongest contributions from subcortical and parietooccipital cortical regions, respectively, while PC3 was characterized by positive and negative loadings with strongest contributions from rostral and caudal cortical regions, respectively. Within the AD group, PC1 subject scores were positively correlated with performance across all cognitive domains (Pearson r = 0.24-0.40, P = 0.06-0.006), PC2 subject scores were inversely correlated with age (Pearson r = -0.45, P = 0.002) and PC3 subject scores were significantly correlated with CDR-sb (Pearson r = 0.46, P = 0.04). No significant correlations were observed between cognitive performance and PC subject scores in CN participants. CONCLUSIONS: This data-driven approach defined specific spatial patterns of synaptic density correlated with unique participant characteristics within the AD group. Our findings reinforce synaptic density as a robust biomarker of disease presence and severity in the early stages of AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Análise de Componente Principal , Tomografia por Emissão de Pósitrons , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Disfunção Cognitiva/patologia , Encéfalo/patologia
20.
N Engl J Med ; 389(12): 1096-1107, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37458272

RESUMO

BACKGROUND: Trials of monoclonal antibodies that target various forms of amyloid at different stages of Alzheimer's disease have had mixed results. METHODS: We tested solanezumab, which targets monomeric amyloid, in a phase 3 trial involving persons with preclinical Alzheimer's disease. Persons 65 to 85 years of age with a global Clinical Dementia Rating score of 0 (range, 0 to 3, with 0 indicating no cognitive impairment and 3 severe dementia), a score on the Mini-Mental State Examination of 25 or more (range, 0 to 30, with lower scores indicating poorer cognition), and elevated brain amyloid levels on 18F-florbetapir positron-emission tomography (PET) were enrolled. Participants were randomly assigned in a 1:1 ratio to receive solanezumab at a dose of up to 1600 mg intravenously every 4 weeks or placebo. The primary end point was the change in the Preclinical Alzheimer Cognitive Composite (PACC) score (calculated as the sum of four z scores, with higher scores indicating better cognitive performance) over a period of 240 weeks. RESULTS: A total of 1169 persons underwent randomization: 578 were assigned to the solanezumab group and 591 to the placebo group. The mean age of the participants was 72 years, approximately 60% were women, and 75% had a family history of dementia. At 240 weeks, the mean change in PACC score was -1.43 in the solanezumab group and -1.13 in the placebo group (difference, -0.30; 95% confidence interval, -0.82 to 0.22; P = 0.26). Amyloid levels on brain PET increased by a mean of 11.6 centiloids in the solanezumab group and 19.3 centiloids in the placebo group. Amyloid-related imaging abnormalities (ARIA) with edema occurred in less than 1% of the participants in each group. ARIA with microhemorrhage or hemosiderosis occurred in 29.2% of the participants in the solanezumab group and 32.8% of those in the placebo group. CONCLUSIONS: Solanezumab, which targets monomeric amyloid in persons with elevated brain amyloid levels, did not slow cognitive decline as compared with placebo over a period of 240 weeks in persons with preclinical Alzheimer's disease. (Funded by the National Institute on Aging and others; A4 ClinicalTrials.gov number, NCT02008357.).


Assuntos
Doença de Alzheimer , Anticorpos Monoclonais Humanizados , Idoso , Feminino , Humanos , Masculino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Tomografia por Emissão de Pósitrons , Idoso de 80 Anos ou mais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...